
Tigon: A Distributed Database for a CXL Pod

Yibo Huang, Haowei Chen, Newton Ni, Yan Sun†, Vijay Chidambaram, Dixin Tang, Emmett Witchel
The University of Texas at Austin †University of Illinois Urbana-Champaign

Abstract
Building efficient distributed transactional databases remains
a challenging problem despite decades of research. Existing
distributed databases synchronize cross-host concurrent data
accesses over a network, which requires numerous message
exchanges and introduces performance overhead.

We describe Tigon, the first distributed in-memory database
that synchronizes concurrent cross-host data accesses using
atomic operations on CXL memory. Using CXL memory is
more efficient than network-based approaches, but Tigon’s de-
sign must address CXL’s higher latency and lower bandwidth
relative to local DRAM, as well as CXL’s limited hardware sup-
port for cross-host cache coherence. For TPC-C and a variant
of YCSB, Tigon achieves up to 2.5× higher throughput com-
pared with two optimized shared-nothing databases that use
CXL memory as a transport and up to 18.5× higher throughput
compared with an RDMA-based distributed database.

1 Introduction

Despite decades of research, efficiently scaling a transactional
database to multiple hosts remains a challenging task due to
the complexities of data synchronization and concurrency
control across hosts [17, 33, 48, 49, 56, 61, 66, 77, 85]. Existing
distributed databases synchronize cross-host concurrent data
accesses over a network, which introduces high and variable
overhead due to cross-host message exchanges and high
network latencies. For example, traditional shared-nothing
databases partition data across hosts and let each host process
all read/write operations to its partition [17, 33, 56, 66]. The
performance of this architecture drops significantly when the
database needs to process a large number of multi-partition
transactions, that is, transactions that need to read or write data
in multiple partitions and will be executed by multiple hosts.
Multi-partition transactions are costly due to numerous mes-
sage exchanges between hosts and the two-phase commit (2PC)
protocol necessary to complete them [23, 48, 49, 61, 77, 85].

A recent line of research leverages RDMA to accelerate

distributed transaction processing [4, 13, 20, 21, 32, 62, 71–73].
Many papers adopt an RDMA-based shared and disaggre-
gated memory architecture to avoid multi-partition transac-
tions [19, 44, 75, 78–80, 87]. However, the latency for memory
access through RDMA networks is one to two orders of magni-
tude higher than local DRAM [26] and synchronizing concur-
rent read/write operations to database tuples through RDMA
networks is still expensive, because round trips on RDMA-
based networks have latencies in the microseconds range.

This paper proposes a new direction for building distributed
transactional databases: instead of synchronizing cross-host
concurrent data accesses over a network, we propose synchro-
nizing these accesses directly through memory, leveraging the
capabilities of emerging CXL technology. CXL memory is
a memory module that can be physically connected and shared
by a small number of hosts (e.g., 8–16 [6, 45]). The CXL
protocol allows CPUs to directly access CXL memory using
normal load and store instructions, and it provides much lower
latency compared with RDMA-based shared memory. With
CXL version 3.0 (and in 3.2 [2], which is the current version
as of this writing) the specification allows CXL memory to
be shared across hosts with hardware cache coherence, which
provides new opportunities for cross-host data sharing and
data synchronization. We call a collection of machines that
share CXL memory a CXL pod [11, 29, 74, 86].

While CXL memory has advantages over RDMA and other
networking technologies, it must be used with care. CXL mem-
ory has two major limitations: 1) it has higher latency (214-
394 ns vs. 111-117 ns) and lower bandwidth (18-52 GB/s
vs. 218-246 GB/s for a read-only workload) compared with
local DRAM, as measured on hardware prototypes in a re-
cent study [47]. and 2) only a small part of the physical CXL
memory space, ranging from dozens to hundreds of MBs, will
be kept hardware cache-coherent as reported in recent work
from AMD [30]. Higher latency and lower bandwidth means
a database cannot simply place all its data in CXL memory if it
wants to achieve peak performance. Limited hardware cache-
coherent memory means that database synchronization struc-
tures must be reorganized to minimize the use of this memory.



CPUs

DRAM

Partition

HWcc

Shared CXL Memory

Metadata ...

SWcc

Other
Metadata
& Tuple

CXL Index

Metadata Metadata

Other
Metadata
& Tuple

8-16 Hosts

PCIe

...

Figure 1: Tigon on a CXL pod.

In this paper, we introduce Tigon1, the first distributed in-
memory database that leverages CXL memory for efficiently
synchronizing cross-host concurrent data accesses. Tigon
benefits from the performance of CXL memory while avoiding
CXL’s weaknesses, based on a key insight about general
transactional workloads: while the size of a database could be
large, the size of the set of tuples that will be concurrently read
or written by running transactions from different hosts is small.
This is because each transaction typically accesses a small
number of tuples (e.g., from a few to dozens) and the number
of concurrently running transactions is typically equal to the
number of available CPU cores for an in-memory database. For
example, in TPC-C [7], a transaction accesses an average of 39
tuples, with a total data size of approximately 7 KB. Assuming
1,000 cores, each core executing one transaction, the system
has at most 39K active tuples, which amount to 7 MB of data.
We call such a set of tuples the Cross-host Active Tuples or
CAT for short. We design Tigon to efficiently maintain the
CAT in CXL memory, thereby increasing performance by
converting multiple message exchanges into data structure op-
erations. Because the data structure needs to contain only data
that is currently shared, Tigon’s performance is not limited by
CXL’s inferior latency and bandwidth relative to local DRAM.

Tigon initially partitions data across hosts as shown in
Figure 1 and dynamically maintains the CAT in CXL memory.
Cross-host concurrent accesses to the CAT can be efficiently
synchronized using atomic operations, metadata (e.g., database
latches), and hardware cache coherence, allowing Tigon to
adopt a single-host concurrency control protocol to ensure
transaction semantics without using 2PC. If one host needs to
access a tuple stored in a remote host, Tigon moves the tuple to
shared CXL memory. The data shared in CXL memory will be
moved back to its original host based on a system policy that
considers access patterns to the shared data. In addition, each
host can retain the data accessed exclusively by that host in
local DRAM, leveraging its low latency and high bandwidth.

Tigon addresses two broad challenges for maintaining
the CAT in CXL memory. First, maintaining the CAT in
the limited hardware cache-coherent region may introduce
frequent data movement between local DRAM and CXL
memory, increasing CXL memory bandwidth usage and the
latency for processing a transaction. Tigon addresses this

1A Tigon is a hybrid of a male tiger and a female lion.

challenge with an efficient software cache coherence protocol
that enables it to use CXL memory that is not kept coherent
by hardware. Tigon uses the capacity of this large software
cache-coherent region for database data, which reduces the
need for data movement. Tigon also reduces data movement
with common sense optimizations like only copying updated
tuples from CXL memory back into local DRAM.

Indexes and certain metadata (e.g., database latches) require
intensive synchronization across hosts, which is efficiently
provided by atomic instructions operating on hardware cache-
coherent memory. A key design principle for Tigon is to sep-
arate data by synchronization requirements: synchronization-
heavy metadata (e.g., indexes and latches) is stored in the hard-
ware cache-coherent (HWcc) region, while other data (such as
tuples) is stored in the software cache-coherent (SWcc) region,
as illustrated in Figure 1. Databases already have synchroniza-
tion primitives to ensure the integrity of tuples under concurrent
accesses, so we co-design Tigon’s software cache coherence
protocol with the database’s mechanism for protecting the
integrity of tuples to minimize synchronization overhead.

The second challenge Tigon addresses is to efficiently access
data and provide transaction semantics (i.e., ACID properties)
while data is moving between local DRAM and CXL mem-
ory. To do so, Tigon utilizes database latches and indexes to
provide efficient access to the CAT under data movement and
enhances concurrency control (i.e., two-phase locking (2PL)
and next-key locking) and logging protocols to ensure transac-
tion semantics without using 2PC. First, for a tuple moved to
CXL memory, the owner host can cache a shortcut pointer to
quickly find this tuple without searching the CXL index in CXL
memory, reducing latency and CXL memory bandwidth usage.
The challenge is to ensure its correctness under concurrent data
movement. Second, we enhance 2PL to work together with a
scalable logging protocol [82] such that Tigon, running on mul-
tiple hosts, does not need to use 2PC when committing transac-
tions. Finally, we design an enhanced next-key locking proto-
col that maintains minimal additional metadata for each tuple to
avoid the phantom problem [24]. We also design a lightweight
data movement policy that keeps tuples that will most likely
be exclusively accessed by a single host in local DRAM.

The novelty of Tigon lies in its use of inter-host CXL mem-
ory to accelerate transaction processing, while avoiding the
performance pitfalls of using CXL memory naïvely. Tigon uses
inter-host CXL memory to accelerate message passing, but it
also reduces the need to pass messages by using data structures
in inter-host CXL memory that are synchronized via atomic
operations. The result is greater throughput for transaction
processing, especially transactions that access data from mul-
tiple partitions. Experiments on TPC-C and a variant of YCSB
demonstrate that Tigon achieves up to 2.5× higher throughput
compared with two optimized shared-nothing databases using
CXL memory as a transport and up to 18.5× higher throughput
compared with an RDMA-based distributed database.

While prior research has explored improving the efficiency



of databases using CXL memory [8,10,39,60], none considers
leveraging limited hardware cache-coherent memory for build-
ing an efficient distributed database. This work is also different
from prior research on memory tiering and pooling [22, 45,
54, 59, 65], which makes CXL memory available to applica-
tions transparently, placing the burden of memory management
and data migration to system software (or software and hard-
ware [83]). Tigon, in contrast, is built to explicitly move data
to and from CXL memory shared among multiple hosts and
explicitly allocates CXL memory and places data structures
in either the hardware or software cache-coherent regions.

This paper makes the following contributions:
• We introduce the first distributed in-memory database that

synchronizes cross-host concurrent data accesses via atomic
operations on CXL memory.

• We address the hardware limitations of CXL memory by
maintaining the CAT in CXL memory and using a software
cache coherence protocol to reduce the cost of maintaining
the CAT (§3.2).

• We design new methods for efficiently accessing the CAT
under data movement and enhance concurrency control and
logging protocols to ensure transaction semantics without
using 2PC (§3.4 and §3.5).

• We implement Tigon (https://github.com/ut-datas
ys/tigon) and perform extensive experiments that show
its performance advantages over shared-nothing databases
and an RDMA-based distributed database (§4).

2 CXL Pod Background and Challenges

Compute Express Link (CXL) is a high-performance, open-
standard interconnect for communications between CPUs,
devices, and memory based on PCIe 5.0 and 6.0. CXL memory
is a memory module connected to one or multiple hosts and
has different characteristics depending on the CXL specifica-
tion [2] version and the type of device. Type-3 CXL devices are
memory expanders (that use the CXL.mem protocol), with the
version 1.1 CXL specification allowing a single host to access
PCIe-connected memory in a cache-coherent manner. CXL 3.0
and the most recent CXL 3.2 specify cacheline-granularity
memory sharing and cache coherence across multiple hosts.

A recent study [47] shows that CXL memory has signifi-
cantly higher latency (214-394 ns vs. 111-117 ns) and lower
bandwidth (18-52 GB/s vs. 218-246 GB/s for a read-only work-
load) compared with local DRAM. Exact bandwidth depends
on the specific hardware prototype and the memory access
pattern. Another study [64] reports 11.7 GB/s sequential read
bandwidth, but falls as low as ∼5 GB/s for other access pat-
terns.
CXL pod. A CXL pod [11, 29, 74, 86] includes a small
number of machines (e.g., 16) that connect directly to a
shared CXL memory module via multiple ports (called a
multi-headed device [2] (MHD)). The advantage of an MHD

is that it allows multiple hosts to connect to a single memory
device without a switch, which adds significant latency. This
scale of configuration provides rich computing resources for
transactional databases and has small latency and bandwidth
penalties compared with a single host [45].

A CXL pod is an intermediate organization between a
shared-memory multi-processor and a distributed system. The
pod has hosts with local, hardware cache-coherent memory.
Each host also connects to a single, shared CXL memory mod-
ule. The inter-host CXL memory supports limited (and ex-
pensive) hardware cache coherence. There is a long debate in
computer architecture as to the limits of scalability of SMP ma-
chines [36, 53], but the pod provides a new set of tradeoffs. We
built Tigon to navigate this novel and complex tradeoff space.

CXL memory devices that can be used in a CXL pod
exist, notably SK Hynix’s Niagara 2.0 [6] and a Microsoft
prototype [11]. The former is limited to 8 hosts, and the latter
to 2. Neither supports hardware cache coherence, but their
latency and bandwidth are broadly similar to our evaluation
testbed (§4). Tigon is designed for CXL devices with some
hardware cache-coherent memory. Designing a database
to be efficient without hardware cache-coherent memory is
worthwhile future work.

Comparison to NUMA and RDMA-based architectures.
NUMA and CXL memory share some architectural properties,
but detailed studies show that NUMA behavior often differs
significantly from CXL [31, 64]. In our experience building
Tigon, we found that a NUMA platform served as an infor-
mative proxy for CXL, but much of our system tuning was
specialized to CXL (e.g., CXL bandwidth is much lower than
NUMA bandwidth on our testbeds). RDMA-based distributed
databases are more scalable in terms of the number of nodes in
the system because they use explicit addressing and switches,
but they have a higher latency, in the microseconds range.

Hardware limitations of CXL memory. Three properties
of CXL memory make it challenging to use for a database:
(1) it has higher latency than local DRAM; (2) it has lower
bandwidth than local DRAM; (3) it has limited hardware
cache-coherent memory capacity. The high latency and low
bandwidth means any system that uses CXL memory must
lean heavily on the performance of local DRAM. Data can
be copied into and out of CXL memory, but too much data
movement will overwhelm its limited bandwidth.

Why inter-host hardware cache coherence is limited. The
CXL standard, starting from 3.0, provides support for inter-
host hardware cache coherence through back-invalidations,
that is, the CXL device includes a snoop filter (similar to
processor snoop filters) for managing coherence. However,
providing cache coherence for the entire CXL memory address
space will be too expensive to be practical due to the size of
the snoop filter required and the metadata overhead, as shown
by AMD [30]. There is no theoretical reason for the limitation,
it is purely practical. There is a fixed area budget for the CXL

https://github.com/ut-datasys/tigon
https://github.com/ut-datasys/tigon


controller that is consumed by ports and control logic [11].
Snoop filters for the entire CXL memory address space would
be large because they must track all cacheable data for every
host. As an extreme example, Intel’s Granite Rapids 6980P
processor would require tags for 16×504 MB, or 7.9 GB of
cacheable data. Snoop filters that are cost effective will cover a
much smaller region. In order to control costs and complexity,
vendors will limit the size of the hardware cache-coherent
region of CXL memory devices. Because we do not have exact
figures, our study varies the amount of available hardware
cache-coherent memory to evaluate its impact (§4).

Failure model. We assume a fail-stop model, and achieve
durability using logging. Logs are written to local SSD devices.
A failure of any component causes a failure of (and subsequent
recovery for) the entire system.

3 Tigon Design and Implementation

Tigon is a distributed in-memory database designed to run
transactions efficiently on a CXL pod. Unlike traditional
distributed databases, Tigon exploits unique features of the
CXL pod to lower the overhead of cross-host coordination and
significantly increase transaction throughput.

3.1 Tigon Overview

Architecture. Tigon adopts the Pasha architecture [29], where
data is initially partitioned across the hosts of the CXL pod and
dynamically moved between local DRAM and CXL memory.
Each host is the owner of a disjoint partition of the data. It
stores its partition in local DRAM and accesses this partition
with low latency and high bandwidth. When data is accessed by
its owner host, no cross-host coordination is required. When a
host wants to access data it does not own, it requests the owner
to move the data to shared CXL memory such that Tigon can
maintain the cross-host active tuples (CAT), the set of tuples
that are concurrently read or written by active transactions run-
ning on different hosts, in CXL memory. Shared data requires
synchronization across hosts; hosts synchronize using latches
and locks in the hardware cache-coherent part of CXL memory.
Hosts communicate with each other by sending messages
using CXL memory as a transport, similar to HydraRPC [50].

Software cache coherence (§3.2). Tigon introduces a novel
software cache coherence protocol for CXL memory because
most of the physical CXL memory space will lack hardware
cache coherence support. The chief insight is that hardware
support for cache coherence is only required for key metadata,
such as latches and locks, that are frequently accessed by
multiple hosts; by carefully limiting the size of such metadata
and strategically placing it in the hardware cache-coherent
region, Tigon can provide software cache coherence using the
database’s existing concurrency control techniques. Software

Host 1 Host 2

Request move of C
to CXL memory2

DRAM
A,6 B,2

v=read(A)

write(C,v+3)

1
Transaction 2

DRAM
C,0 D,5

v=read(C)

write(D,v+1)

C,9

Shared CXL Memory

4
5

3

Transaction 1

Figure 2: An example transaction workflow in Tigon.

cache coherence allows Tigon to use much more CXL memory
than the limited hardware cache-coherent region.

Handling concurrency (§3.4). Tigon needs to manage concur-
rency: both among threads within a host, and between hosts.
Tigon utilizes database latches and indexes to efficiently access
the CAT even when data is dynamically moving between local
DRAM and CXL memory. Tigon adapts concurrency control
protocols, two-phase locking (2PL) and next-key locking, to
ensure serializability while maintaining the CAT.

Avoiding two-phase commit (2PC) (§3.3 and §3.5). 2PC
adds considerable overhead to transactions as it requires two
rounds of message exchanges. Avoiding 2PC requires a single
host to execute and log all database modifications involved
in a transaction, enabling a host to commit its transaction
locally. Tigon avoids 2PC based on two insights. First, by
maintaining the CAT in CXL memory, a single host can
complete all modifications to database tuples required by a
transaction (e.g., by taking locks on CXL-resident structures).
Second, although transaction execution in Tigon may involve
modifying indexes of other hosts, indexes can be reconstructed
from the database tuples during recovery, avoiding the need to
log index modifications. As a result, only tuple changes need
to be logged at the host executing the transaction to ensure
atomicity and durability. Combining these two insights, a
single host executes all transaction operations (excluding data
movement and modifications to indexes of other hosts) and
logs tuple modifications. We adapt a logging protocol [82],
which was designed for scalability, to avoid 2PC.

Example transaction workflow. Figure 2 shows an example
transaction workflow in Tigon. The database stores key-value
pairs (e.g., tuple (A, 6) has key A and value 6). The example
transaction (transaction 1) reads tuple A and writes tuple C,
and is executed by a worker thread on Host 1 (its transaction
worker).

1. The transaction worker acquires the read lock for tuple
(A, 6) using 2PL. It then reads tuple (A, 6).

2. To write to tuple (C, 0), which is stored in Host 2, the
transaction worker sends a message to Host 2 to request
a move of (C, 0) to CXL memory.

3. A worker thread on Host 2 moves (C, 0) to CXL memory.
4. The transaction worker acquires the write lock on tuple

(C, 0) and updates it to (C, 9).



tuple

epoch-version

is-valid

tuple

epoch-version

is-valid

shortcut-ptr

2pl-lock

local-latch

Local Row

HWcc Record (8B)

SWcc Row

Shared CXL Memory

Shortcut
Pointer

HWcc

HWcc
Record

...

SWcc

SWcc
RowSWcc

Row

CXL Index

SWcc
Row

...

HWcc
Record

HWcc
Record

Partition 1 Data Moved to CXL

HWcc-latch(1b)

2pl-lock(8b)

has-next-key(1b)

is-dirty(1b)

clock-bit(1b)

SWcc-bitmap(16b)

Local
Row

...
Local Index

Local
Row

Local
Row

SWcc-row-ptr(36b)

DRAM

Partition 1

Partitions in Hosts' DRAM

Partition 1 Data Moved to CXL

Local Data of Partition 1

Figure 3: Data organization in Tigon.

5. The transaction worker of transaction 2 needs to access
the tuple for key C at the same time; it finds (C, 9) in CXL
memory is locked and aborts transaction 2 to prevent
deadlocks (using the NO_WAIT policy).

After the transaction worker finishes transaction 1, it commits
the transaction without any further messages to Host 2 or using
2PC, since it executes all operations of transaction 1 itself and
has all the log records of the changes transaction 1 has made
to the database. In this example, the CAT is the single tuple
with key C.

3.2 Data Organization & SW Cache Coherence
We now describe how Tigon organizes data and implements
software cache coherence. Figure 3 shows an overview of the
data organization in Tigon.
Partitions and local row. Tigon organizes data into tables
and partitions them across hosts. Tigon stores the partitioning
function in a shard map and replicates it across hosts (not
shown in the figure). Each host uses the shard map to find
the host that owns a certain tuple, as do many partition-based
distributed databases [1, 18, 33, 77]. Partitions are initially
stored in each host’s local DRAM. Data is stored in the form
of local row. Each local row contains the following:
• Latch for mutual exclusion (local-latch)
• Locking metadata for 2PL (2pl-lock)
• Pointer to the tuple in CXL memory (shortcut-ptr)
• Flag indicating whether the tuple is valid (is-valid)
• Field used for logging (epoch-version)
• Database tuple (tuple)

Data and metadata in CXL memory. Tigon maintains the
CAT in CXL memory. To minimize hardware cache-coherent
(HWcc) memory usage while still enabling efficient cross-host
synchronization on tuples moved to CXL memory, Tigon
stores the metadata needed for intensive cross-host synchro-
nization in the HWcc region and everything else (i.e., databse
tuples and other metadata) in the CXL memory region that

is not hardware cache-coherent (non-HWcc). If a local row is
moved to CXL memory, Tigon divides it into an HWcc record
stored in the HWcc region and an SWcc row stored in the
non-HWcc region. We develop a software cache coherence
protocol to enable cacheable reads of the SWcc rows.
HWcc record and SWcc row. Each SWcc row contains the
is-valid, epoch-version, and tuple fields, similar to a
local row. Each HWcc record occupies 8 bytes and contains
the following fields:
• 1-bit exclusive latch for mutual exclusion (HWcc-latch)
• 8-bit locking metadata for 2PL (2pl-lock)
• 1-bit flag supporting next-key locking (has-next-key)
• 1-bit flag indicating whether the tuple has been modified

since being moved to CXL memory (is-dirty)
• 1-bit supporting the CLOCK policy (clock-bit)
• 16-bit bitmap for software cache coherence (SWcc-bitmap)
• 36-bit pointer to SWcc row (SWcc-row-ptr)
The SWcc-row-ptr stores an offset relative to a base memory
pointer. It can represent up to 64 GB of memory space, and
is large enough for storing the data that needs to be frequently
accessed across hosts in a transactional database. If the offset
is defined at the granularity of cachelines, the addressable
tuple storage expands to 2 TB (i.e., 236×26 bytes).

The is-dirty bit allows the owner host to read clean tuples
from local DRAM instead of CXL memory, significantly
reducing CXL memory bandwidth usage.
Indexes and shortcut pointer. Tigon maintains two types
of indexes: local index and CXL index. Each host maintains
a local index in DRAM, which maps a primary key to a
local row, for its own partition of each table. Local indexes
are used by each host to find the tuples that it owns. Tigon
maintains a primary index in the HWcc region (the CXL index)
for tuples from the same table and partition that are resident
in CXL memory. If a tuple is moved to CXL memory, the
local row includes a pointer, shortcut-ptr, that points to the
corresponding HWcc record, which in turn has the SWcc-row-
ptr that points to the SWcc row. Otherwise, the shortcut-



ptr is NULL. Tigon pays the price of storing the shortcut-
ptr in a local row to efficiently access a tuple moved to CXL
memory without searching the CXL index. As tuples are
moved between local DRAM and CXL memory, the owner
host updates the CXL index while each non-owner host uses
the CXL index to find tuples that it does not own.

Example. We use the example in Figure 2 to explain the data
organization. Initially, the table is partitioned across the two
hosts. Tuple (A, 6) belongs to the partition owned by Host 1 and
is stored in the local DRAM of Host 1. So theshortcut-ptrof
the local row is NULL. When transaction 1 from Host 1 needs to
access tuple (C, 0), Host 2 moves this tuple to CXL memory by
creating an HWcc record and an SWcc row, setting the SWcc-
row-ptr of the HWcc record to point to the SWcc row, and
inserting the HWcc record to the CXL index. It will also set the
shortcut-ptr of the local row to point to the HWcc record.
Host 1 can now get tuple (C, 9) using the CXL index.

Data movement policy. Tigon moves tuples to CXL memory
upon request. If a host’s HWcc memory usage exceeds a
predefined threshold, it will move a tuple it owns from CXL
memory back to local DRAM. Ideally, a host prioritizes
moving tuples least likely to be accessed by non-owner hosts
in the future back to local DRAM. This makes the Least
Recently Used (LRU) policy a natural fit. Under LRU, the
tuple least recently accessed by a non-owner host is moved
back to local DRAM. However, maintaining the metadata
required for LRU is expensive; LRU requires maintaining a
linked list across tuples in CXL memory and updating this list
for every access from a non-owner host.

To reduce overhead and minimize the HWcc memory usage,
Tigon adopts the CLOCK policy [16]. Each tuple in CXL
memory is associated with a bit (the clock-bit, as shown
in Figure 3) stored in the HWcc record. The clock-bit is
set whenever a non-owner host accesses the tuple. To move
a tuple back, the owner host maintains a circular cursor to scan
the tuples in CXL memory. If the clock-bit for a tuple is set,
the host unsets it and moves the cursor forward. Otherwise,
the host moves the tuple back to local DRAM.

Software cache coherence. We co-design a novel software
cache coherence protocol that works with the database’s
internal synchronization. Tying coherence to synchronization
has the advantage that the coherence granularity is large (i.e., a
tuple, which is larger than a cacheline) and the maintenance of
coherence metadata is less expensive because it is combined
with synchronization tasks that are already part of the
database’s operation. The disadvantage is that the mechanism
requires source code changes and is specific to the database,
so it cannot be directly reused by other applications.

A database thread needs to take a latch before accessing a
tuple to ensure only one thread can read or modify this tuple.
Therefore, Tigon reuses this latch, HWcc-latch, to support
software cache coherence by embedding the metadata, SWcc-
bitmap, within the HWcc record.

The SWcc-bitmap uses a bit for each host (Tigon supports
up to 16 hosts) to track the hosts that can do cacheable loads to
SWcc rows, because cacheable loads have much lower latency
than non-temporal loads. When a host reads an SWcc row, it
looks at its bit in the SWcc-bitmap to determine how to access
the data in the row. If the host’s bit is set, it uses cacheable
loads. Otherwise, its cached copies might be out of date. So it
flushes the relevant cachelines, and reads the SWcc row from
CXL memory into the CPU cache, and sets its bit in the SWcc-
bitmap. So long as no other host updates the SWcc row (i.e.,
so long as the bit remains set), the host can use cacheable loads
to read the SWcc row. A host that updates an SWcc row will
unset the bits for all other hosts.

3.3 Transaction Execution
Transactions in Tigon use epoch-based group commit similar
to SiloR [82]. Tigon breaks transactions into epochs and
ensures that transactions in smaller epoch numbers are serially
ordered and committed before those in larger ones.
Workers. Each host in Tigon includes multiple threads for
executing transactions. A transaction is initially assigned to a
thread, called a transaction worker, for executing and commit-
ting this transaction. The transaction worker may ask another
host to do work (e.g., move data into CXL memory) to com-
plete the transaction it is currently executing. We call the host
the transaction worker runs on the local host and the partition
owned by the local host the local partition. Similarly, we call
the other hosts and the other partitions remote hosts and remote
partitions, respectively, with respect to the transaction worker.
Read, write, and range query. Algorithm 1 shows the
process of reading or writing a tuple in Tigon. If the tuple is
in the local partition, the transaction worker gets the local row
through the local index and further gets the HWcc record if
the tuple resides in CXL memory (Lines 1-11 in Algorithm 1).
To read or write a tuple (i.e., the ReadOrWrite function in
Algorithm 1), the transaction worker checks the 2pl-lock
to take a read or write lock or abort the transaction based on
the 2PL protocol. For example, if the write lock bit of the 2pl-
lock is already set, the transaction will be aborted. Otherwise,
the transaction worker proceeds to perform read or write.

To read or write a tuple owned by a remote host (Lines
13-22 in Algorithm 1), the transaction worker will ask a remote
host to move the tuple to CXL memory if it cannot find it in
the CXL index. Note that we use a while loop to retry the
data move in request because it is possible that the remote
host moves the tuple back to local DRAM before the worker
accesses this tuple. In practice, the worker will almost never
retry due to the data movement policy of Tigon.

Processing range queries is similar to processing read oper-
ations. If a range query is on the local partition, the transaction
worker searches the local index to get the local rows within
the range and optionally follows the shortcut-ptr to access
the tuples moved to CXL memory. Otherwise, the transaction



Algorithm 1: Read or write a tuple in Tigon.
Input: k – key of the tuple to be read or written

1 if k belongs to local partition then
2 localRow←Get(k, local index);
3 Acquire local-latch for localRow;
4 if shortcut-ptr of localRow is NULL then
5 ReadOrWrite(localRow);

6 else
7 hwccRecord← shortcut-ptr of localRow;
8 Acquire HWcc-latch for hwccRecord;
9 ReadOrWrite(hwccRecord);

10 Release HWcc-latch for hwccRecord;

11 Release local-latch for local row;

12 else
13 hwccRecord←Get(k, CXL index);
14 while hwccRecord is NULL do
15 Ask the owner host to move k to CXL memory;
16 if the host replies k does not exist then
17 return NOT_EXIST;

18 else
19 hwccRecord←Get(k, CXL index);

20 Acquire HWcc-latch for hwccRecord;
21 ReadOrWrite(hwccRecord);
22 Release HWcc-latch for hwccRecord;

worker will search the corresponding CXL index. If the CXL in-
dex does not include all tuples for the queried range, the worker
asks the corresponding remote host to move all tuples in that
range to CXL memory and searches the CXL index again.
Insert and delete. Inserting a tuple to local partition requires
creating a local row for the tuple and inserting it into the local
index. The challenge is inserting a tuple to a remote partition.
To address this challenge, our key idea is to let the remote
host prepare the index entry and metadata for the insert and
let the transaction worker perform the actual insert operation.
Specifically, the remote host is requested to create a local row
with the is-valid flag set to False, insert the local row to
its local index, and move the local row to CXL memory (the
value of the is-valid flag is copied from the local row to
the SWcc row). The is-valid flag prevents other transaction
workers from reading or writing this tuple. Afterward, the
transaction worker gets the HWcc record from the CXL index,
acquires the write lock, completes the insert by copying the
tuple to SWcc row and setting the is-valid flag to True.

The algorithm for deleting a tuple is similar to the one for
reading or writing a tuple. If the tuple belongs to the local
partition, the transaction worker acquires the write lock and
sets the is-valid flag to False to delete the tuple. To delete
a tuple from a remote partition, the transaction worker asks
the remote host to move the tuple to CXL memory, gets the

HWcc record from the CXL index, and sets the is-valid
flag to False. Deleted tuples are reclaimed using epoch-based
reclamation (details in 3.6).

3.4 Concurrency Control
Tigon manages concurrency at two levels: 1) maintaining and
accessing the CAT under concurrent accesses across hosts;
2) providing serializability for concurrent transactions.

3.4.1 Maintaining and accessing the CAT

Tigon has the following synchronization goals for maintaining
the CAT. (1) Even during data movement, HWcc records can
be safely inserted and deleted; (2) a worker thread on the owner
host can safely use the shortcut-ptr, even when tuples
are moving between CXL memory and local DRAM; (3)
workers from different hosts can concurrently and efficiently
get HWcc records by caching and reusing the pointers to
HWcc records within a transaction.

Tigon achieves these goals using (1) the local-latch,
which can only be accessed by a thread on the owner host; (2)
the CXL index, which can be accessed by any host; and (3)
the HWcc-latch, which can be accessed by any host.
Data movement. In Tigon, only threads on the owner host
can insert and delete HWcc records for data movement. If a
non-owner thread wants to insert or delete a record, it sends a
message to the owner host. The owner host will make inserted
HWcc records visible to non-owner hosts by putting their entry
in the CXL index, which it only does after all of its metadata
structures are valid. Deleted HWcc records are removed
from the CXL index by the owner host. HWcc records are
moved from CXL memory to local DRAM by the owner host
following a data movement policy.
Shortcut pointer. Owner hosts in Tigon can use theshortcut-
ptr of the local row to find and update a tuple in CXL memory
without searching the CXL index. Owner hosts can also move
their own tuple into or out of CXL memory by inserting or
deleting an HWcc record to/from the CXL index. The key chal-
lenge is to ensure that the value of the shortcut-ptr always
reflects the latest state of an HWcc record, even when a worker
thread accesses it while another thread wants to move it. The
shortcut-ptr must either point to the correct HWcc record
or it must be NULL if the tuple is not resident in CXL memory.
Tigon solves this challenge by reusing the database latch for
mutual exclusion. Each operation (i.e., data movement and
tuple get) needs to take the local-latch of the local row be-
fore executing, ensuring that only one worker from the owner
host can proceed at a time. Given that a non-owner host cannot
move a tuple directly, the tuple get operation can then safely
follow the shortcut-ptr to get the HWcc record. For data
movement operations, they will then insert the newly created
HWcc record into the CXL index, update the shortcut-ptr
to point to the HWcc record, and release the local-latch.



Non-owner get. Non-owner hosts get an HWcc record through
the CXL index and cache the pointer to the HWcc record
for subsequent accesses within a transaction. When a tuple
is being moved from CXL memory back to local DRAM,
the non-owner host must be able to safely dereference the
pointer to the HWcc record. At the start of a CXL memory to
local DRAM move, Tigon marks the SWcc row as invalid by
setting the is-valid flag to 0, allowing the non-owner host
to know that if they read this entry, they have followed a stale
pointer to an invalid entry. Tigon eventually reclaims invalid
entries using epoch-based reclamation (details in §3.6), when
it knows there are no more possibly stale pointers that point
to these invalid entries.

3.4.2 Serializing transactions

Two-phase locking. We adapt 2PL to Tigon, as described in
§3.3. 2PL requires a transaction to acquire either a read or write
lock before accessing a tuple, depending on the type of the ac-
cess. Lock acquisitions and releases are broken into two consec-
utive phases: the transaction only acquires or upgrades locks
in the first phase and only releases or downgrades locks after
all locks are acquired. Tigon uses Strong Strict 2PL (SS2PL),
which acquires locks during transaction execution and releases
them only upon completion [12, 24]. Tigon prevents dead-
locks by aborting a transaction when a lock request is denied
(NO_WAIT policy), following prior research [76] showing that
this approach yields better scalability than deadlock detection
for in-memory databases with a similar setup to Tigon.

As the first work to leverage CXL memory for building effi-
cient distributed transactional databases, we choose to support
conventional concurrency control protocols, 2PL and next-key
locking, rather than optimistic concurrency control (OCC)
and multi-version concurrency control (MVCC), even though
OCC and MVCC may yield better performance for read-heavy
workloads as shown in prior research [38, 68, 77, 79]. Support-
ing these protocols in Tigon requires addressing non-trivial
technical challenges and goes beyond the scope of this paper.
Phantoms and next-key locking. Phantom problems [24]
occur because 2PL locks only individual keys but does not
lock the gaps between them. For instance, when a transaction
scans a range, it locks only the tuples encountered during
the scan, but allows other transactions to modify the range’s
membership (e.g., through inserts), violating serializability.

The classic solution to addressing phantom problems is
next-key locking [55]. Records are accessed via an ordered
index (such as a B+-tree) and for inserts, deletes, scans, and
point queries on non-existing keys, locks are acquired for both
the key or key range and the next key in order.

We adapt next-key locking for Tigon. Supporting next-key
locking for a local index is straightforward, but a challenge
arises when a transaction worker needs to access data in a
remote partition. In this case, the worker relies on the CXL
index to perform next-key locking. Unfortunately, the CXL

index may not include the next key as it only includes a subset
of tuples from the local index.

To address this limitation, we enhance the CXL index with
additional next-key information. Each tuple in the CXL index
is augmented with the has-next-key flag indicating whether
its next key in the CXL index is also the next key in the local
index. With this mechanism, the transaction worker can safely
determine whether it can directly lock the next key in the CXL
index or needs to request a remote host to move the tuple for
the next key to CXL memory.

The has-next-key information may be updated whenever
an insert or delete operation is performed on the local index or
a tuple is moved into or out of CXL memory. Additionally, the
has-next-key information can be used to determine whether
the CXL index has missing keys with respect to the local index
for a given range, which can be used to support range queries
on the CXL index.

3.5 Logging and Recovery
As mentioned in §3.1, to avoid 2PC, Tigon maintains the CAT
to ensure each host can perform and log all modifications
to tuples involved in a transaction. Our logging protocol is
adapted from SiloR [82], a fast and scalable logging protocol
for in-memory databases. Since SiloR is designed for an
optimistic concurrency control protocol, we adapt its key ideas
to design a logging protocol for 2PL in Tigon.
Key ideas. Tigon shares high-level ideas with SiloR [82], in-
cluding epoch-based group commit and parallel value logging.
Specifically, Tigon guarantees that transactions with a smaller
epoch number are serially ordered and committed before those
with a larger epoch number. Transactions of each epoch are
committed by flushing the buffered log records to local storage.
To support parallel logging, each worker thread independently
generates a log record for each write at the commit phase,
including the value of the tuple being modified and the epoch
number and version number associated with the tuple. The log
records are sent to dedicated logger threads for persistence. To
support recovery, the protocol guarantees that the log record
with the highest epoch and the highest version number within
that epoch represents the most recent value for the tuple.
Logging. Tigon associates each transaction with an epoch
number, and each tuple with an epoch number and a version
number (i.e., epoch-version in Figure 3). The epoch number
of a tuple indicates the epoch of the most recent transaction
that modified it, while the version number specifies the most
recent version within that epoch.

Tigon maintains a global epoch number, E, that advances
periodically and is shared across all hosts via the HWcc region
of CXL memory. Since E advances slowly (e.g., every 10
ms in our prototype), synchronizations on E will not be a
bottleneck as SiloR shows [82].

During transaction commit, the transaction worker sets
the epoch number of the transaction by reading the current



E from CXL memory. When applying writes to the tuple, the
transaction worker updates the epoch number and version
number as follows. If the transaction’s epoch number equals
to the tuple’s, the version number is incremented. Otherwise,
the tuple’s epoch number is updated to the transaction’s epoch
number and the version number is reset to 0, indicating the
start of a new epoch.
Log records. A log record is generated for each write, insert,
and delete. It includes the identifier of the tuple (i.e., table ID
and primary key), the epoch-version, and the correspond-
ing value of the tuple or the delete operation. Each transaction
worker stores the log records in a memory buffer and passes it to
the logger thread when it fills or at an epoch boundary. Each log-
ger thread reads log buffers and flushes them to local storage. In
additional to the global epoch number, Tigon maintains a local
epoch number, el , for each logger thread, in the HWcc region.
Each logger thread increments el as it flushes the log buffers,
indicating that all log records with an epoch number less than
el are persisted to local storage. Transactions in an epoch e are
regarded as committed if e is less than el of all logger threads.
Recovery. With this logging protocol, Tigon can adopt the
same parallel recovery algorithm as SiloR. That is, Tigon can
move all log records of committed epochs to CXL memory
and then divide them across worker threads such that each
thread applies assigned log records in parallel. For a log record
that corresponds to a database tuple, it is applied to the tuple if
it has a larger epoch-version than the last log record applied
to this tuple. Otherwise, this log record is skipped.

3.6 Implementation
We implement Tigon in C++ by building on the Lotus [85]
codebase, which has ∼18,000 LoC. We added∼5,000 LoC.
Tigon provides read, write, delete, insert, and range query APIs
for developers to implement transactions or parameterized
transactions. We implement local index and CXL index using
an existing B+-tree implementation [84], which adopts the op-
timistic crabbing index concurrency control protocol [42]. We
extend the B+-tree to support next-key locking. Tigon adopts
offset pointers [14] to make CXL-resident data structures
position-independent. CXL memory is exposed as a CPU-less
NUMA node by Linux. We modify the mimalloc [41] memory
allocator to use the CXL memory region.

Each host in Tigon includes multiple worker threads for
processing transactions and data movement requests. If a
transaction needs to access data of another host, its worker
thread will send a data movement request using CXL memory
as a transport. A dedicated input thread pulls these requests and
dispatches them round robin to the local message queues of
worker threads. The worker thread will process data movement
requests from other hosts when it waits for the result of a data
movement request it makes, or after a transaction is finished.
If a transaction aborts due to a conflict, Tigon retries it until
success.

We implement Tigon’s CXL-based transport layer as lock-
free multi-producer single-consumer (MPSC) ringbuffers in
CXL memory. The metadata of the ringbuffer (e.g., head and
tail) is stored in the HWcc region while the buffer entries are
stored in the non-HWcc region. Each input thread is assigned
a ringbuffer for receiving messages from other hosts.

Tigon uses epoch-based reclamation (EBR) [25] to ensure
memory safety. To adapt EBR to the CXL pod, Tigon stores a
local epoch number for each worker thread (in addition to the
global epoch number and the per-logger local epoch numbers
in §3.5) in the HWcc region and maintains per-worker retired
objects list in the local DRAM of each host. Worker threads
check the global epoch number periodically to determine the
current epoch and update their local epoch number. Worker
threads reclaim the memory objects retired in a given epoch
only after all workers have exited that epoch.

4 Evaluation

We seek to answer the following questions:
• What are the end-to-end performance benefits of Tigon

compared with the state-of-the-art? (§4.2)
• How does varying the hardware cache-coherent (HWcc)

memory budget impact Tigon’s performance? (§4.3)
• What is the performance benefit of software cache coher-

ence compared with using HWcc memory only? (§4.4)
• How does logging impact the throughput and latency of

Tigon? (§4.5)
• How effective are our optimizations? (§4.6)

4.1 Experimental Setup

CXL pod emulation. We emulate a CXL pod on a machine
that includes an Intel Xeon Platinum 8568Y+ CPU, 512
GB local DRAM, and a 128 GB CXL 1.1 memory device.
Both the local DRAM and CXL memory use DDR5 4800
DRAM. The CXL memory module has a single memory
channel and is connected to the CPU via a PCIe 5.0 x8 link.
This CXL memory device has a 1.6× higher latency than the
local DRAM (259 ns vs. 159 ns), and its bandwidth is 13%
of the bandwidth of the local DRAM (31.8 GB/s vs. 238.3
GB/s) using Intel’s Memory Latency Checker [3] under a 3:1
read/write ratio. The machine is equipped with a Samsung
Datacenter SSD [5] for persistent storage and a 100 Gbps
Mellanox MT42822 BlueField-2 ConnectX-6 NIC.

We run 8 virtual machines (VMs) on this machine, each with
5 vCPUs and 10 GB local DRAM. We use SR-IOV to create the
virtualized network for our VMs, using TCP over Ethernet. We
configure the VMs to share the CXL memory device to emulate
a CXL pod that includes 8 machines sharing CXL memory.
There are currently no physical CXL devices that support inter-
host cache coherence. For our setup, the inter-VM cache coher-
ence is implemented by the physical machine’s cache coher-
ence, which will be faster than real inter-host hardware cache



coherence (when it becomes available). We analyze the poten-
tial impact of higher-latency inter-host cache coherence in §4.3.

We limit the HWcc region of the emulated CXL pod to 200
MB for all experiments. That is, our CXL memory allocator is
configured to allocate no more than 200 MB of HWcc memory,
despite the emulated CXL pod offering 128 GB. We study the
impact of varying HWcc memory budgets in §4.3 and adjust
the size of the HWcc region for that experiment only.

Baselines. We compare Tigon with three distributed databases,
Sundial [77], DS2PL [85], and Motor [79]. We do not compare
with Lotus [85] because it does not support all five transactions
in TPC-C. We choose Sundial and DS2PL as representatives of
traditional partition-based shared-nothing databases that sup-
port general-purpose transactional workloads, just as Tigon
supports them. DS2PL uses two-phase locking (2PL) for reads
and writes, similar to Tigon. Sundial includes an advanced con-
currency control protocol that uses OCC for reads and 2PL for
writes. Both Sundial and DS2PL are vulnerable to the phantom
problem [24] that Tigon correctly addresses. Motor is a state-of-
the-art distributed database that uses RDMA-based shared dis-
aggregated memory and achieves persistence via replication.

Improved baselines. For a fairer comparison with Tigon, we
enhance our chosen baselines in a number of ways. We imple-
ment next-key locking in DS2PL to avoid the phantom problem.
We enhance Sundial and DS2PL to support durability using our
logging protocol (§3.5). Sundial and DS2PL support only two
of the five transactions in TPC-C, so we added implementations
of insert, delete, and scan so they could execute all five.

Sundial and DS2PL originally use the network as their
transport layer as they adopt the shared-nothing architecture,
whereas Tigon uses a queue in CXL memory. To demonstrate
that Tigon’s superior performance is not simply due to its faster
transport layer, we upgrade Sundial and DS2PL to also pass
messages over CXL memory (i.e., Sundial-CXL and DS2PL-
CXL). Tigon uses 16 MB of CXL memory that is not hardware
cache-coherent (non-HWcc) for its message buffers and we
give the baselines 512 MB because they pass larger messages.

Using a memory queue for message passing allows us to
make another improvement: we repurpose an I/O thread as
a worker thread (for executing transactions). The IO thread
was necessary because it wrote to a network device and could
block in the OS, while our memory queue is non-blocking.
We name these improved baselines Sundial+ and DS2PL+.
We later show that these improved baselines outperform the
original Sundial and DS2PL, and only compare Tigon with
these improved baselines (§4.2).

Configurations and metrics. We run Tigon, Sundial, and
DS2PL in the VMs of the emulated CXL pod. For each test,
we run each system for 30 seconds to warm up and report the
performance for the following 30 seconds. We mainly present
throughput since Tigon prioritizes throughput over latency
using group commit, a common practice widely adopted in
transactional databases [9, 33, 69, 75, 77, 85]. We set each

epoch to be 10 ms for the group commit protocol.
We run Motor on four machines, each including two Intel

Xeon Platinum 8380 CPUs, 256 GB local DRAM, and a 25
Gbps Mellanox ConnectX-6 NIC. We use one machine as
the compute server and three machines as memory servers, as
the paper specifies [79]. Motor replicates its data in the three
memory servers to achieve durability. We configure Motor
to use 40 CPU cores to match the configuration of Tigon and
the other two baselines.
Benchmarks. We use the full TPC-C [7] and a variant of
YCSB [15] as our benchmarks. We configure TPC-C to use
24 warehouses (2.2 GB total), where each warehouse is a
partition, and store 3 warehouses in each host (one warehouse
per worker thread). We evaluate the standard mix for TPC-C’s
five stored procedures: 45% NewOrder, 43% Payment, 4%
OrderStatus, 4% Delivery, and 4% StockLevel. We configure
YCSB to generate a table including 2.4M tuples, each with
one 4-byte key column and ten 100-byte value columns (2.2
GB total) [15]. The table is range-partitioned into 8 partitions
across hosts. Each transaction performs 10 read or write opera-
tions with a configurable read/write ratio. The key accessed
by each operation is generated using the Zipfian distribution
with skewness factors of 0.7 and 0.99. We use 0.7 and 0.99 to
simulate medium-contention and high-contention workloads,
respectively, as done by prior research [79].

4.2 End-to-End Performance

We evaluate Tigon’s end-to-end performance using TPC-C
and YCSB.
TPC-C setup. The performance of the compared systems
changes significantly based on how many transactions access
data from multiple partitions. In the default configuration of
TPC-C, 10% of NewOrder and 15% of Payment transactions
access multiple warehouses (i.e., multi-partition transactions).
Therefore, we vary the two percentages proportionally, up to
60% remote NewOrder and 90% remote Payment transactions
(and we refer to this configuration as 60/90).
Performance of improved baselines. We measure the perfor-
mance benefits of the improved baselines using TPC-C with
varying percentages of multi-partition transactions. Figure 4a
and 4b show that replacing the network with CXL memory
increases the transaction throughput for the workloads that in-
volve multi-partition transactions since these transactions need
to exchange network messages during transaction execution
and 2PC. For the 60/90 configuration, performance improves
by 2.0× for both Sundial and DS2PL. Repurposing the I/O
thread as a transaction thread brings the total improvement to
39% and 32% when there are no multi-partition transactions
(0/0), and 4.2× and 3.9× at 60/90. The rest of our evaluation
compares only against the optimized baselines.
TPC-C performance. Figure 4c shows TPC-C throughput
under varying percentages of multi-partition transactions.



0/0 10/15 20/30 30/45 40/60 50/75 60/90
Multi-partition Transaction Percentage

0

100K

200K

300K

400K

500K

600K

700K

800K

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Sundial+
Sundial-CXL
Sundial-NET

(a) Improved Sundial

0/0 10/15 20/30 30/45 40/60 50/75 60/90
Multi-partition Transaction Percentage

0

100K

200K

300K

400K

500K

600K

700K

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

DS2PL+
DS2PL-CXL
DS2PL-NET

(b) Improved DS2PL

0/0 10/15 20/30 30/45 40/60 50/75 60/90
Multi-partition Transaction Percentage

0

100K

200K

300K

400K

500K

600K

700K

800K

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Tigon
Sundial+

DS2PL+
Motor

(c) Tigon comparing with improved baselines

Figure 4: TPC-C performance comparison, varying percentages of multi-partition transactions. We optimize (a) Sundial and (b) DS2PL by
replacing the original network transport layer (*-NET) with CXL (*-CXL), and again by replacing an I/O thread with a worker thread (Sundial+
and DS2PL+). (c) Then, we compare Tigon with Sundial+, DS2PL+, and Motor.

0

1.0M

2.0M

3.0M

4.0M 100%R, 0%W 95%R, 5%W

0 20 40 60 80 100
0

100K
200K
300K
400K
500K
600K 50%R, 50%W

0 20 40 60 80 100

0%R, 100%W

Multi-partition Transaction Percentage

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Tigon Sundial+ DS2PL+ Motor

Figure 5: YCSB throughput, varying both read/write ratios and
percentages of multi-partition transactions.

When there are no multi-partition transactions, Sundial+ and
DS2PL+ are 37% and 8.5% faster than Tigon, respectively.
The performance benefit of Sundial+ is due to its optimistic
concurrency control protocol and the fact it does not avoid
phantoms. Avoiding phantoms using next-key locking (§3.4.2)
costs Tigon 10%-12% of its performance across all tested per-
centages of multi-partition transactions; for TPC-C’s default
configuration of 10/15, a variant of Tigon that allows phantoms
(not shown in the figure) outperforms Sundial+ by 5.8%.

As the percentage of multi-partition transactions increases
to 60/90, Tigon outperforms Sundial+ by 75% and DS2PL+ by
2.5×. The throughput of Sundial+ and DS2PL+ drops signifi-
cantly due to the overhead of inter-host communication during
transaction execution and 2PC. For instance, in the 60/90 case,
Sundial+ and DS2PL+ send 3.3 and 4.1 messages per trans-
action, respectively, whereas Tigon moves the data that will
be accessed across hosts to CXL memory (during the warmup
phase) and does not send messages during transaction execu-

tion. More specifically, Tigon moves the CUSTOMER and STOCK
tables to CXL memory, withCUSTOMER containing 720K tuples
and STOCK containing 2.4M tuples. The two tables consume
176 MB of HWcc memory (for metadata) and 1.6 GB CXL
memory in total. No data is moved from CXL memory to local
DRAM during the experiment. For TPC-C, supporting soft-
ware cache coherence allows Tigon to use 8.2× more CXL
memory for sharing data.

Compared with Motor, Tigon achieves 15.9×-18.5× higher
throughput mainly because Motor shares and replicates data
in RDMA-based memory servers and suffers from the high
latency of one-sided RDMA operations. We observe that the
performance of Motor, approximately 30K/s, is constrained
by the limited network bandwidth (25 Gbps) of the machines
available to us. The original paper [79] reports that Motor
achieves a maximum TPC-C throughput of approximately
100K/s with 24 warehouses and 40 CPU cores. Tigon uses the
same configuration and its throughput ranges from 460K/s
to 528K/s, as shown in Figure 4c.

YCSB setup. We run YCSB with a skewness factor of 0.7
under varying percentages of multi-partition transactions and
different read/write ratios (i.e., 100R/0W, 95R/5W, 50R/50W,
and 0R/100W). To generate a multi-partition transaction, we
randomly choose a remote partition and have half (5) of the
operations access that remote partition.

YCSB performance. Figure 5 shows the results. When there
are no multi-partition transactions, the evaluated systems
(except Motor) perform similarly (within 3.3%) for workloads
with writes. For the read-only workload, Tigon outperforms
both Sundial+ and DS2PL+ once the percentage of multi-
partition transactions reaches 20% or higher. Comparing Tigon
with Sundial+ at 100% multi-partition transactions, Tigon is
2.0×–2.3× faster. Tigon moves all 2.4M tuples to CXL mem-
ory as they are accessed across hosts. These tuples consume
112 MB of HWcc memory and 2.6 GB CXL memory in total.
No Data is moved from CXL memory back to local DRAM, as
HWcc memory usage remains well below the 200 MB limit.



2 4 6 80
100K
200K
300K
400K
500K
600K

2 4 6 80

0.5M

1.0M

1.5M

2.0M

Number of Hosts
(a) TPC-C (b) YCSB (95%R, 5%W)

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Tigon Sundial+ DS2PL+

Figure 6: Throughput of TPC-C (60% remote NewOrder and 90%
remote Payment) and YCSB (95%R, 5%W, 100% multi-partition
transactions) on 1, 2, 4, 6, and 8 hosts.

Motor’s performance is independent of the percentage of
multi-partition transactions, but it is 5.4×–14.3× slower than
Tigon. Results with a skewness factor of 0.99 show a similar
trend. For example, with 100% multi-partition transactions,
Tigon outperforms Sundial+ and DS2PL+ by 2.7× and 3.5×
for the 50R/50W workload, respectively. We use a skewness
factor of 0.7 for all remaining tests.
Scalability. We evaluate the scalability of Tigon, Sundial+,
and DS2PL+ by running TPC-C with 60/90 multi-partition
transactions and YCSB (95% reads, 5% writes) with 100%
multi-partition transactions on configurations with 1, 2, 4, 6,
and 8 hosts. As shown in Figure 6, Tigon scales efficiently,
achieving a 5.7× throughput improvement for TPC-C and a
3.5× improvement for YCSB as the number of hosts increases
from 1 to 8. In comparison, Sundial+ and DS2PL+ exhibit
significantly lower scalability, with throughput gains of only
2.4× and 2.1× for TPC-C, and 1.4× and 1.5× for YCSB,
respectively. The slope of Tigon’s TPC-C scaling graph from
2 to 8 processors is 55.1Ktx/s per processor, while Sundial+
is 29.9Ktx/s per processor and DS2PL+ is 21.6Ktx/s per
processor. For YCSB the slopes are 137.5Ktx/s per processor
for Tigon, and 61.1Ktx/s per processor for Sundial+ and
63.0Ktx/s per processor for DS2PL+.

We are unable to empirically determine the scalability limit
of Tigon due to hardware constraints that prevent large-scale
experiments. Performance could plateau for many reasons:
limited scalability of atomic instructions over CXL memory,
especially under contention, limited scalability of hardware
cache coherence, or the fixed size of the HWcc region could
all become bottlenecks. Identifying and analyzing these limits
is an important direction for future research.

4.3 Impact of Limited HWcc Memory
We measure TPC-C performance while varying the HWcc
memory budget from 10 MB to 200 MB. Figure 7 shows the
results. It is encouraging that even with as little as 50 MB of
HWcc memory, Tigon performs only 5.8% slower than the
configuration with unlimited HWcc memory.

With only 10 MB of HWcc memory, performance suffers

0/0 20/30 40/60 60/900
100K
200K
300K
400K
500K
600K

0 20 40 60 80 1000

0.5M

1.0M

1.5M

2.0M

2.5M

Multi-partition Transaction Percentage
(a) TPC-C (b) YCSB (95%R, 5%W)

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Tigon (200MB) 150MB 100MB 50MB 10MB

Figure 7: Throughput of TPC-C and YCSB (95%R, 5%W), varying
both hardware cache-coherent memory budgets and percentages of
multi-partition transactions.

because transactions wait for data to be moved into and out
of CXL memory. When running TPC-C with a 60/90 mix of
multi-partition transactions, 10 MB of HWcc memory requires
Tigon to move 16K tuples in and out of CXL memory every
second. Bandwidth is not a factor limiting performance; Tigon
consumes only 367 MB/s of CXL bandwidth (approximately
1.1% of device bandwidth) in this configuration.

YCSB with a 95/5 read/write mix requires 100 MB to
achieve full performance because there is more multi-partition
sharing in YCSB than TPC-C—YCSB has only a single
table and every data tuple has a probability of being remotely
accessed. At 100% multi-partition transactions and with 10
MB HWcc memory, Tigon moves 110K tuples every second
and consumes 2.9 GB/s of CXL bandwidth (approximately
9.1% of device bandwidth).
Inter-host cache coherence. We emulate the latency of inter-
host cache coherence (i.e., back invalidations [2]) using inter-
core cache coherence on our hardware prototype. This under-
estimates the cost of inter-host cache coherence for our evalu-
ated systems. We cannot directly measure the number of back-
invalidates our workloads would generate, because there are no
hardware counters that report it and accurate modeling would
require knowing the cache state. However, we can measure
inter-host invalidates for our software cache coherence proto-
col (§3.2) for 60/90 TPC-C. We measure 12.0 million tuple
accesses that require inter-host invalidations (which is 14.5%
of total accesses, due to locality). If we conservatively estimate
back-invalidations to be 4× slower than local invalidations,
they would reduce performance by 41.4% (computed using the
CXL miss latency times four). Tigon would be 2.8%, 45%, and
9.6× faster than Sundial+, DS2PL+, and Motor, respectively.

4.4 Software Cache Coherence
We evaluate the performance impact of software cache coher-
ence by running TPC-C and YCSB (95% reads, 5% writes) in
four configurations: only using HWcc memory (NoSWcc), us-
ing HWcc memory and only using non-temporal loads/stores to
access CXL memory in the software cache-coherent (SWcc) re-
gion (NonTemporal), using HWcc memory and only allowing a



0/0 20/30 40/60 60/900
100K
200K
300K
400K
500K
600K

0 20 40 60 80 1000

0.5M

1.0M

1.5M

2.0M

2.5M

Multi-partition Transaction Percentage
(a) TPC-C (b) YCSB (95%R, 5%W)

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Tigon NoSharedReader NonTemporal NoSWcc

Figure 8: Throughput of TPC-C and YCSB (95%R, 5%W) with
different software cache coherence protocols and varying percentages
of multi-partition transactions.

single host to read data in the SWcc region (NoSharedReader),
and Tigon with all optimizations for software cache coherence.
NoSWcc avoids cache coherence problems by only using
HWcc memory, but it suffers from the limited size of the HWcc
region. NonTemporal provides cache coherence by avoiding
the cache; accesses to the SWcc region use non-temporal loads
and stores which bypass the CPU cache. NoSharedReader
only allows reads of SWcc data for a single host at a time.

TPC-C. Figure 8 shows the benefits of Tigon’s software cache
coherence. When there are no multi-partition transactions, no
data is moved to CXL memory and all variants perform iden-
tically. Across all tested percentages of multi-partition trans-
actions, the NonTemporal configuration shows 4.5%-5.1%
less performance than Tigon. The small performance win is
because Tigon already caches tuples in local DRAM, which ob-
viates the performance advantage of cacheable access to CXL
memory. NoSWcc performs well at low multi-partition transac-
tion percentages because it uses the HWcc region to store data;
this data can be cached, leading to higher performance. How-
ever, as the number of multi-partition transactions increases,
the performance of NoSWcc drops because it requires frequent
data movement. At 60/90, NoSWcc is 19% slower than Tigon.
The loss of performance comes from the latency of moving 9K
tuples in and out of CXL memory every second. The workload
consumes 641 MB/s of CXL bandwdith, well within the de-
vice’s capabilities. TPC-C does not have read-shared data, so
NoSharedReader has almost identical performance with Tigon.

YCSB. YCSB has significant read-sharing and shared data.
NoSWcc is 19% slower than Tigon for 10% multi-partition
transactions, but it is 4.3× slower (and the lowest performing
option) at 100% multi-partition transactions. At 100% multi-
partition transactions NoSWcc’s performance is limited by the
latency of data movement to the HWcc region—115K tuples/s
(but only 3.0 GB/s bandwidth use;∼9.4% of CXL bandwidth).
Across all tested percentages of multi-partition transactions,
Tigon is 11%-20% faster than NonTemporal because data is
repeatedly accessed and Tigon can cache the tuples, which
is much faster than non-temporal reads. But the advantage is
small because Tigon caches tuples in local DRAM. At 100%

1ms 10 ms 20 ms 30 ms 40 ms 50 ms

TPC-C
Tput (Ktx/s) 508 525 532 535 537 540

p50 (ms) 17.7 22.6 26.0 31.6 37.3 43.3

p99 (ms) 345.0 54.9 57.0 64.7 75.2 86.8

YCSB (50% read and 50% write)
Tput (Ktx/s) 516 534 538 541 542 545

p50 (ms) 12.4 24.6 30.8 36.8 41.5 45.0

p99 (ms) 373.1 62.3 72.3 82.6 89.6 95.4

Table 1: Throughput, in Ktx/s (1,000 × transactions/second) and
latency (in ms) for different epoch durations, running TPC-C and
YCSB (50% reads, 50% writes) without multi-partition transactions.

multi-parition transactions, NoSharedReader is 15% slower
than Tigon. NoSharedReader’s performance suffers because
it manipulates the SWcc-bitmap, and the read-sharing of
data in YCSB means that NoSharedReader incurs 2.6×more
cacheline flushes than Tigon.

4.5 Logging and Latency
Tigon uses epoch-based group commit (based on SiloR [82])
to ensure that it can maintain high throughput at reasonable
latency. Committing logs at end of each transaction would pro-
vide low latency, but the resulting small, synchronous writes
would severely under-utilize storage bandwidth. The use of
virtualization further drops the storage bandwidth realized
inside the VMs (from 600 MB/s to 380 MB/s, tested using dd
with 4MB block size). To better utilize storage performance,
Tigon collects 4 MB of logs before flushing them to SSD.

Table 1 shows the throughput and latency for a variety of
logging epochs, running TPC-C and YCSB (50% reads, 50%
writes) with no multi-partition transactions. For a 10 ms epoch,
when compared with a 50 ms epoch, throughput for TPC-C
drops only 2.8%, while its p50 latency drops by 48%. With
a 10 ms epoch, Tigon has only 6.0% lower throughput for
TPC-C compared with Tigon without logging. YCSB shows
a similar result. Since Sundial+ and DS2PL+ adopt the same
logging protocol, their latencies are similar to Tigon. Motor
does not do group commit, but instead uses three in-memory
replicas to achieve durability, so their p50 latencies are in
the hundreds of microseconds. Tigon, instead, prioritizes
throughput over latency using group commit.

4.6 Optimizations

Using CLOCK. Tigon moves data into CXL memory on
demand, and uses the CLOCK algorithm to determine which
data to move back to local DRAM (§3.2). Tigon uses CLOCK
to minimize its use of HWcc memory and reduce the overhead
of maintaining the replacement metadata; we compare its
performance to the more accurate LRU policy to quantify the
accuracy sacrificed for metadata efficiency.



Implementing LRU requires more CXL memory and more
synchronization (than CLOCK) to maintain the LRU list. If we
place the LRU list pointers in HWcc memory, YCSB will re-
quire 149 MB of HWcc memory to move all its tuples into CXL
memory, which is 33% more than CLOCK (112 MB). If we
limit the HWcc memory budget to 100 MB,LRU is 2.4× slower
than CLOCK for YCSB with a 95/5 read/write mix and 100%
multi-partition transactions because HWcc memory is over-
subscribed. If we set the HWcc memory budget to unlimited
and run the same experiment, LRU is 17% slower than CLOCK
because of lock contention while manipulating the LRU list.
CLOCK is therefore preferred due to its metadata efficiency.
Shortcut pointer. Tigon maintains the shortcut-ptr in the
local row (Figure 3) to allow the owner host to find the tuple in
CXL memory without looking through the CXL index. Across
varying percentages of multi-partition transactions (excluding
0%), shortcut pointers improve throughput by 16% for TPC-C,
and by 8.3%–24% for YCSB with 95% reads and 5% writes.
Tracking tuple modifications. Tigon allows the owner host
to read CXL-resident tuples from local DRAM rather than
CXL memory when the tuple is clean (i.e., the is-dirty
flag in Figure 3 is False). This optimization is important for
read-heavy workloads; YCSB read-only throughput improves
by 60% for 10% multi-partition transactions and by 27% for
100% multi-partition transactions.

5 Related Work

CXL-enabled memory tiering. A lot of recent work on CXL
memory management focuses on system software moving
memory pages between local and CXL memory on behalf of
applications [22, 54, 59, 65, 83]. Much of the work focuses on
accurate detection of hot pages and policies for moving pages.
Some hot pages only contain a few hot lines [63], making
it difficult to recoup the cost of migration and motivating
systems where hardware migrates cachelines [83].
CXL-enabled memory pooling and sharing. Recent work
explores how CXL-enabled memory pooling and sharing can
reduce cost in datacenters and HPC systems [11,28,45,70],ben-
efit serverless computing [28, 57], and accelerate distributed
applications [50, 51, 81]. Distributed applications sharing
CXL memory are vulnerable to partial failures [81, 86]. CXL-
SHM [81] describes a distributed memory management system
based on reference counting that tolerates partial failures.
Databases over CXL memory. Many papers consider opti-
mizing databases using CXL memory [8, 10, 39, 60] such as
elastically allocating CXL memory [39] or leveraging it for
data shuffling [10]. One paper considers mapping SSD to the
memory address space through CXL protocols and adopting
hardware-based optimizations (e.g., (de)compression) when
databases interact with this memory address space [40]. Two
papers discuss the research opportunities of building databases
over CXL memory [27,43], but neither considers building a dis-

tributed transactional database over CXL memory. Pasha [29]
describes a database architecture for CXL pods,but Tigon is the
first system designed, implemented, and evaluated for a pod.

Distributed databases. Traditional distributed databases
adopt a partition-based shared-nothing architecture, but their
performance degrades quickly as the number of multi-partition
transactions increases [17, 33, 56, 66]. Many papers optimize
this architecture by reducing the number of multi-partition
transactions [18, 49, 58, 61], optimizing concurrency control
protocols [37,52,77,85], or eliminating or reducing the cost of
2PC [23, 34, 46, 48, 67]. Tigon’s performance remains robust
because it uses CXL memory to synchronize multi-partition
transactions instead of relying on message passing.

Many papers study RDMA-based distributed transactional
databases [4,13,19–21,32,44,62,71–73,75,78–80,87]. Some
of them optimize partition-based databases [13, 20, 21, 32, 62,
71–73] while more recent papers adopt a shared disaggregated
memory architecture to avoid multi-partition transactions [4,
19,44,75,78–80,87]. Motor [79] is a recent instance of this de-
sign and our evaluation shows the limits of its performance due
to the high cost of RDMA relative to CXL memory access (§4).

6 Conclusion

This paper introduces Tigon, the first distributed in-memory
database that synchronizes cross-host concurrent data accesses
via atomic operations on CXL memory. Tigon addresses the
inherent limitations of CXL memory, including higher latency,
lower bandwidth, and limited hardware support for cache
coherence, through three key innovations: a novel software
cache coherence protocol for extending the cache-coherent
region, efficient concurrency control protocols for maintaining
and accessing data in CXL memory, and a scalable logging
protocol for avoiding two-phase commit. Tigon is publicly
available at https://github.com/ut-datasys/tigon.

7 Acknowledgment

We thank Nam Sung Kim at UIUC for technical consultation
and for providing an experimental testbed. We thank our
shepherd, Phillip Levis, and the anonymous reviewers for their
constructive feedback. We thank Zixuan Wang at SJTU for
his help with RDMA setup. Our work is supported in part by
PRISM, one of the seven centers in JUMP 2.0, a Semicon-
ductor Research Corporation (SRC) program sponsored by
DARPA. We used the Chameleon testbed [35] supported by
the National Science Foundation for development and artifact
evaluation. Vijay Chidambaram was partially supported by
Toyota during this project.

https://github.com/ut-datasys/tigon


References

[1] CockroachDB Serverless. https://www.cockroachl
abs.com/blog/announcing-cockroachdb-serve
rless/. (Accessed: May 2025).

[2] Compute Express Link (CXL) Specification, Revision
3.2. https://computeexpresslink.org/wp-conte
nt/uploads/2024/11/CXL-Specification_rev3p
2_ver1p0_2024October2_evalcopy.pdf. (Accessed
May 2025).

[3] Intel® Memory Latency Checker v3.11b. https://ww
w.intel.com/content/www/us/en/developer/ar
ticles/tool/intelr-memory-latency-checker
.html. (Accessed May 2025).

[4] Oracle RAC. https://www.oracle.com/technet
work/database/options/clustering/overvie
w/new-generation-oracle-rac-5975370.pdf.
(Accessed: May 2025).

[5] Samsung MZQL2960HCJR-00A07. https://semi
conductor.samsung.com/us/ssd/datacenter-s
sd/pm9a3/mzql2960hcjr-00a07/. (Accessed: May
2025).

[6] SK hynix Presents CXL Memory Solutions Set to Power
the AI Era at CXL DevCon 2024. https://news.skh
ynix.com/sk-hynix-presents-ai-memory-solut
ions-at-cxl-devcon-2024/. (Accessed May 2025).

[7] TPC Benchmark C. https://www.tpc.org/tpcc/.
(Accessed May 2025).

[8] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin
Gim, Jungmin Kim, Jaemin Jung, Oliver Rebholz,
Vincent Pham, Krishna T. Malladi, and Yang-Seok
Ki. Enabling CXL memory expansion for in-memory
database management systems. In Spyros Blanas and
Norman May, editors, International Conference on
Management of Data, DaMoN 2022, Philadelphia, PA,
USA, 13 June 2022, pages 8:1–8:5. ACM, 2022.

[9] Panagiotis Antonopoulos, Alex Budovski, Cristian
Diaconu, Alejandro Hernandez Saenz, Jack Hu, Hanuma
Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit,
Hugh Qu, Chaitanya Sreenivas Ravella, Krystyna
Reisteter, Sheetal Shrotri, Dixin Tang, and Vikram
Wakade. Socrates: The new SQL server in the cloud. In
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska, editors, Proceedings
of the 2019 International Conference on Management
of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019, pages 1743–1756.
ACM, 2019.

[10] Alexander Baumstark, Marcus Paradies, Kai-Uwe
Sattler, Steffen Kläbe, and Stephan Baumann. So far
and yet so near - accelerating distributed joins with
CXL. In Carsten Binnig and Nesime Tatbul, editors,
Proceedings of the 20th International Workshop on Data
Management on New Hardware, DaMoN 2024, Santiago,
Chile, 10 June 2024, pages 7:1–7:9. ACM, 2024.

[11] Daniel S. Berger, Yuhong Zhong, Fiodar Kazhamiaka,
Pantea Zardoshti, Shuwei Teng, Mark D. Hill, and Ro-
drigo Fonseca. Octopus: Scalable Low-Cost CXL Mem-
ory Pooling. https://arxiv.org/pdf/2501.09020,
2025. (Accessed May 2025).

[12] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[13] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with rdma and caching. Proc.
VLDB Endow., 11(11):1604–1617, July 2018.

[14] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng
Shen, and Youfeng Wu. Efficient support of position
independence on non-volatile memory. In Proceedings
of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-50 ’17, page 191–203,
New York, NY, USA, 2017. Association for Computing
Machinery.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[16] F.J. Corbató and Project MAC (Massachusetts Institute
of Technology). A PAGING EXPERIMENT WITH
THE MULTICS SYSTEM. Project MAC. Massachusetts
Institute of Technology, 1968.

[17] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan,
Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lind-
say Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s globally-distributed database. In Chandu
Thekkath and Amin Vahdat, editors, 10th USENIX
Symposium on Operating Systems Design and Implemen-
tation, OSDI 2012, Hollywood, CA, USA, October 8-10,
2012, pages 251–264. USENIX Association, 2012.

https://www.cockroachlabs.com/blog/announcing-cockroachdb-serverless/
https://www.cockroachlabs.com/blog/announcing-cockroachdb-serverless/
https://www.cockroachlabs.com/blog/announcing-cockroachdb-serverless/
https://computeexpresslink.org/wp-content/uploads/2024/11/CXL-Specification_rev3p2_ver1p0_2024October2_evalcopy.pdf
https://computeexpresslink.org/wp-content/uploads/2024/11/CXL-Specification_rev3p2_ver1p0_2024October2_evalcopy.pdf
https://computeexpresslink.org/wp-content/uploads/2024/11/CXL-Specification_rev3p2_ver1p0_2024October2_evalcopy.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.oracle.com/technetwork/database/options/clustering/overview/new-generation-oracle-rac-5975370.pdf
https://www.oracle.com/technetwork/database/options/clustering/overview/new-generation-oracle-rac-5975370.pdf
https://www.oracle.com/technetwork/database/options/clustering/overview/new-generation-oracle-rac-5975370.pdf
https://semiconductor.samsung.com/us/ssd/datacenter-ssd/pm9a3/mzql2960hcjr-00a07/
https://semiconductor.samsung.com/us/ssd/datacenter-ssd/pm9a3/mzql2960hcjr-00a07/
https://semiconductor.samsung.com/us/ssd/datacenter-ssd/pm9a3/mzql2960hcjr-00a07/
https://news.skhynix.com/sk-hynix-presents-ai-memory-solutions-at-cxl-devcon-2024/
https://news.skhynix.com/sk-hynix-presents-ai-memory-solutions-at-cxl-devcon-2024/
https://news.skhynix.com/sk-hynix-presents-ai-memory-solutions-at-cxl-devcon-2024/
https://www.tpc.org/tpcc/
https://arxiv.org/pdf/2501.09020


[18] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel
Madden. Schism: a workload-driven approach to
database replication and partitioning. Proc. VLDB
Endow., 3(1):48–57, 2010.

[19] Alex Depoutovitch, Chong Chen, Per-Åke Larson, Jack
Ng, Shu Lin, Guanzhu Xiong, Paul Lee, Emad Boctor,
Samiao Ren, Lengdong Wu, Yuchen Zhang, and Calvin
Sun. Taurus MM: bringing multi-master to the cloud.
Proc. VLDB Endow., 16(12):3488–3500, 2023.

[20] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel
Castro,and Orion Hodson. Farm: Fast remote memory. In
Ratul Mahajan and Ion Stoica, editors, Proceedings of the
11th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2014, Seattle, WA, USA, April
2-4, 2014, pages 401–414. USENIX Association, 2014.

[21] Aleksandar Dragojevic, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
compromises: distributed transactions with consistency,
availability, and performance. In Ethan L. Miller and
Steven Hand, editors, Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey,
CA, USA, October 4-7, 2015, pages 54–70. ACM, 2015.

[22] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi
Rajwar, David Culler, Zhiyi Xu, Jianing Fan, Christopher
Kennelly, Bill McCloskey, Danijela Mijailovic, Brian
Morris, Chiranjit Mukherjee, Jingliang Ren, Greg
Thelen, Paul Turner, Carlos Villavieja, Parthasarathy
Ranganathan, and Amin Vahdat. Towards an adaptable
systems architecture for memory tiering at warehouse-
scale. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASPLOS
2023, page 727–741, New York, NY, USA, 2023.
Association for Computing Machinery.

[23] Tamer Eldeeb, Xincheng Xie, Philip A. Bernstein, Asaf
Cidon, and Junfeng Yang. Chardonnay: Fast and general
datacenter transactions for on-disk databases. In Roxana
Geambasu and Ed Nightingale, editors, 17th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2023, Boston, MA, USA, July 10-12,
2023, pages 343–360. USENIX Association, 2023.

[24] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and
Irving L. Traiger. The notions of consistency and
predicate locks in a database system. Commun. ACM,
19(11):624–633, 1976.

[25] Keir Fraser. Practical lock-freedom. Technical
Report UCAM-CL-TR-579, University of Cambridge,
Computer Laboratory, February 2004.

[26] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,
João Carreira, Sangjin Han, Rachit Agarwal, Sylvia

Ratnasamy, and Scott Shenker. Network requirements
for resource disaggregation. In Kimberly Keeton and
Timothy Roscoe, editors, 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016, pages
249–264. USENIX Association, 2016.

[27] Yunyan Guo and Guoliang Li. A cxl-powered database
system: Opportunities and challenges. In 2024 IEEE
40th International Conference on Data Engineering
(ICDE), pages 5593–5604. IEEE, 2024.

[28] Jialiang Huang, MingXing Zhang, Teng Ma, Zheng Liu,
Sixing Lin, Kang Chen, Jinlei Jiang, Xia Liao, Yingdi
Shan, Ning Zhang, Mengting Lu, Tao Ma, Haifeng Gong,
and YongWei Wu. Trenv: Transparently share serverless
execution environments across different functions
and nodes. In Proceedings of the ACM SIGOPS 30th
Symposium on Operating Systems Principles, SOSP ’24,
page 421–437, New York, NY, USA, 2024. Association
for Computing Machinery.

[29] Yibo Huang, Newton Ni, Vijay Chidambaram, Emmett
Witchel, and Dixin Tang. Pasha: An efficient, scalable
database architecture for cxl pods. In 15th Conference
on Innovative Data Systems Research, CIDR 2025,
Amsterdam, The Netherlands, January 19-22, 2025.
www.cidrdb.org, 2025.

[30] Sunita Jain, Nagaradhesh Yeleswarapu, Hasan Al Maruf,
and Rita Gupta. Memory sharing with cxl: Hardware
and software design approaches, 2024.

[31] Houxiang Ji, Srikar Vanavasam, Yang Zhou, Qirong
Xia, Jinghan Huang, Yifan Yuan, Ren Wang, Pekon
Gupta, Bhushan Chitlur, Ipoom Jeong, and Nam Sung
Kim. Demystifying a cxl type-2 device: A hetero-
geneous cooperative computing perspective. In
2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1504–1517, 2024.

[32] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram rpcs. In Kimberly
Keeton and Timothy Roscoe, editors, 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016, pages 185–201. USENIX Association, 2016.

[33] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alex Rasin, Stanley B. Zdonik, Evan
P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. H-
store: a high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow.,
1(2):1496–1499, 2008.



[34] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew
Bainbridge, Matthew Balkwill, Aleksandar Dragojevic,
Boris Grot, Bozidar Radunovic, and Yongguang Zhang.
Zeus: locality-aware distributed transactions. In Antonio
Barbalace,Pramod Bhatotia,Lorenzo Alvisi, and Cristian
Cadar, editors, EuroSys ’21: Sixteenth European Confer-
ence on Computer Systems, Online Event, United King-
dom, April 26-28, 2021, pages 145–161. ACM, 2021.

[35] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau,
Paul Ruth, Dan Stanzione, Mert Cevik, Jacob Colleran,
Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and
Joe Stubbs. Lessons learned from the chameleon testbed.
In Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC ’20). USENIX Association,
July 2020.

[36] Kimberly Keeton. The machine: An architecture for
memory-centric computing. In Proceedings of the 5th
International Workshop on Runtime and Operating
Systems for Supercomputers, ROSS ’15, New York, NY,
USA, 2015. Association for Computing Machinery.

[37] Ziliang Lai, Hua Fan, Wenchao Zhou, Zhanfeng Ma,
Xiang Peng, Feifei Li, and Eric Lo. Knock out 2pc with
practicality intact: a high-performance and general dis-
tributed transaction protocol. In 39th IEEE International
Conference on Data Engineering, ICDE 2023, Anaheim,
CA, USA, April 3-7, 2023, pages 2317–2331. IEEE, 2023.

[38] Per-Åke Larson, Spyros Blanas, Cristian Diaconu,
Craig Freedman, Jignesh M. Patel, and Mike Zwilling.
High-performance concurrency control mechanisms
for main-memory databases. Proc. VLDB Endow.,
5(4):298–309, 2011.

[39] Donghun Lee, Thomas Willhalm, Minseon Ahn,
Suprasad Mutalik Desai, Daniel Booss, Navneet Singh,
Daniel Ritter, Jungmin Kim, and Oliver Rebholz. Elastic
use of far memory for in-memory database management
systems. In Norman May and Nesime Tatbul, editors,
Proceedings of the 19th International Workshop on Data
Management on New Hardware, DaMoN 2023, Seattle,
WA, USA, June 18-23, 2023, pages 35–43. ACM, 2023.

[40] Sangjin Lee, Alberto Lerner, Philippe Bonnet, and
Philippe Cudré-Mauroux. Database kernels: Seamless
integration of database systems and fast storage via cxl.
In CIDR, 2024.

[41] Daan Leijen, Benjamin Zorn, and Leonardo De Moura.
Mimalloc: Free List Sharding in Action, volume 11893
of Lecture Notes in Computer Science, page 244–265.
Springer International Publishing, Cham, 2019.

[42] Viktor Leis, Florian Scheibner, Alfons Kemper, and
Thomas Neumann. The ART of practical synchroniza-
tion. In Proceedings of the 12th International Workshop

on Data Management on New Hardware, DaMoN 2016,
San Francisco, CA, USA, June 27, 2016, pages 3:1–3:8.
ACM, 2016.

[43] Alberto Lerner and Gustavo Alonso. CXL and the return
of scale-up database engines. CoRR, abs/2401.01150,
2024.

[44] Guoliang Li, Wengang Tian, Jinyu Zhang, Ronen
Grosman, Zongchao Liu, and Sihao Li. Gaussdb: A
cloud-native multi-primary database with compute-
memory-storage disaggregation. Proc. VLDB Endow.,
17(12):3786–3798, August 2024.

[45] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel
Ernst, Pantea Zardoshti, Stanko Novakovic, Monish
Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms. In Proceedings of the 28th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), Vancouver, BC Canada, March 2023.

[46] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin
Ooi, Kian-Lee Tan, and Zhengkui Wang. Towards
a non-2pc transaction management in distributed
database systems. In Fatma Özcan, Georgia Koutrika,
and Sam Madden, editors, Proceedings of the 2016
International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pages 1659–1674. ACM, 2016.

[47] Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S.
Berger, Marie Nguyen, Xun Jian, Sam H. Noh, and
Huaicheng Li. Systematic cxl memory characterization
and performance analysis at scale. In Proceedings of the
30th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS ’25, page 1203–1217,
New York, NY, USA, 2025. Association for Computing
Machinery.

[48] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden.
Epoch-based commit and replication in distributed OLTP
databases. Proc. VLDB Endow., 14(5):743–756, 2021.

[49] Yi Lu, Xiangyao Yu, and Samuel Madden. STAR:
scaling transactions through asymmetric replication.
Proc. VLDB Endow., 12(11):1316–1329, 2019.

[50] Teng Ma, Zheng Liu, Chengkun Wei, Jialiang Huang,
Youwei Zhuo, Haoyu Li, Ning Zhang, Yijin Guan, Dimin
Niu, Mingxing Zhang, and Tao Ma. HydraRPC: RPC
in the CXL era. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pages 387–395, Santa
Clara, CA, July 2024. USENIX Association.



[51] Suyash Mahar, Ehsan Hajyjasini, Seungjin Lee, Zifeng
Zhang, Mingyao Shen, and Steven Swanson. Telepathic
datacenters: Fast rpcs using shared cxl memory, 2024.

[52] Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab,
Divyakant Agrawal, and Amr El Abbadi. Maat: Effective
and scalable coordination of distributed transactions in
the cloud. Proc. VLDB Endow., 7(5):329–340, 2014.

[53] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin.
Why on-chip cache coherence is here to stay. Commun.
ACM, 55(7):78–89, July 2012.

[54] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia,
Johannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. Tpp: Transparent page placement
for cxl-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems,Volume 3,ASPLOS 2023,page 742–755,New York,
NY, USA, 2023. Association for Computing Machinery.

[55] C. Mohan. ARIES/KVL: A key-value locking method
for concurrency control of multiaction transactions
operating on b-tree indexes. In Dennis McLeod,
Ron Sacks-Davis, and Hans-Jörg Schek, editors, 16th
International Conference on Very Large Data Bases,
August 13-16, 1990, Brisbane, Queensland, Australia,
Proceedings, pages 392–405. Morgan Kaufmann, 1990.

[56] C. Mohan, Bruce G. Lindsay, and Ron Obermarck.
Transaction management in the r* distributed database
management system. ACM Trans. Database Syst.,
11(4):378–396, 1986.

[57] Adarsh Patil, Vijay Nagarajan, Nikos Nikoleris, and Nico-
lai Oswald. Āpta: Fault-tolerant object-granular cxl dis-
aggregated memory for accelerating faas. In 2023 53rd
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pages 201–215, 2023.

[58] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik.
Skew-aware automatic database partitioning in shared-
nothing, parallel OLTP systems. In K. Selçuk Candan,
Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel
Fuxman, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
pages 61–72. ACM, 2012.

[59] Jie Ren, Dong Xu, Junhee Ryu, Kwangsik Shin, Daewoo
Kim, and Dong Li. Mtm: Rethinking memory profiling
and migration for multi-tiered large memory. In Proceed-
ings of the Nineteenth European Conference on Com-
puter Systems, EuroSys ’24, page 803–817, New York,
NY, USA, 2024. Association for Computing Machinery.

[60] Niklas Riekenbrauck, Marcel Weisgut, Daniel Lindner,
and Tilmann Rabl. A three-tier buffer manager integrat-
ing CXL device memory for database systems. In 40th
International Conference on Data Engineering, ICDE
2024 - Workshops, Utrecht, Netherlands, May 13-16,
2024, pages 395–401. IEEE, 2024.

[61] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew
Pavlo, Ashraf Aboulnaga, and Michael Stonebraker.
Clay: Fine-grained adaptive partitioning for general
database schemas. Proc. VLDB Endow., 10(4):445–456,
2016.

[62] Alex Shamis, Matthew Renzelmann, Stanko Novakovic,
Georgios Chatzopoulos, Aleksandar Dragojevic,
Dushyanth Narayanan, and Miguel Castro. Fast general
distributed transactions with opacity. In Peter A. Boncz,
Stefan Manegold, Anastasia Ailamaki, Amol Deshpande,
and Tim Kraska, editors, Proceedings of the 2019 Inter-
national Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019, pages 433–448. ACM, 2019.

[63] Yan Sun, Jongyul Kim, Douglas Yu, Jiyuan Zhang,
Siyuan Chai, Michael Jaemin Kim, Hwayong Nam,
Jaehyun Park, Eojin Na, Yifan Yuan, Ren Wang,
Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. M5:
Mastering Page Migration and Memory Management for
CXL-based Tiered Memory Systems, November 2024.

[64] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun
Song, Jinghan Huang, Houxiang Ji, Siddharth Agarwal,
Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho Ahn,
Tianyin Xu, and Nam Sung Kim. Demystifying cxl
memory with genuine cxl-ready systems and devices. In
Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’23, page
105–121, New York, NY, USA, 2023. Association for
Computing Machinery.

[65] Bijan Tabatabai, James Sorenson, and Michael M. Swift.
FBMM: Making memory management extensible
with filesystems. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pages 785–798, Santa
Clara, CA, July 2024. USENIX Association.

[66] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin
Jaffray, Lucy Zhang, and Peter Mattis. Cockroachdb:
The resilient geo-distributed SQL database. In David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo, editors,
Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online



conference [Portland, OR, USA], June 14-19, 2020,
pages 1493–1509. ACM, 2020.

[67] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. Calvin:
fast distributed transactions for partitioned database
systems. In K. Selçuk Candan, Yi Chen, Richard T.
Snodgrass, Luis Gravano, and Ariel Fuxman, editors,
Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2012, Scottsdale,
AZ, USA, May 20-24, 2012, pages 1–12. ACM, 2012.

[68] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 18–32, New York, NY, USA,
2013. Association for Computing Machinery.

[69] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Mu-
rali Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh
Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili,
and Xiaofeng Bao. Amazon aurora: Design consid-
erations for high throughput cloud-native relational
databases. In Semih Salihoglu, Wenchao Zhou, Rada
Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings
of the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 1041–1052. ACM, 2017.

[70] Jacob Wahlgren, Maya Gokhale, and Ivy B. Peng.
Evaluating emerging cxl-enabled memory pooling for
hpc systems. In 2022 IEEE/ACM Workshop on Memory
Centric High Performance Computing (MCHPC). IEEE,
November 2022.

[71] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen.
Deconstructing rdma-enabled distributed transactions:
Hybrid is better! In Andrea C. Arpaci-Dusseau and
Geoff Voelker, editors, 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages
233–251. USENIX Association, 2018.

[72] Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen.
Replication-driven live reconfiguration for fast dis-
tributed transaction processing. In Dilma Da Silva and
Bryan Ford, editors, 2017 USENIX Annual Technical
Conference, USENIX ATC 2017, Santa Clara, CA, USA,
July 12-14, 2017, pages 335–347. USENIX Association,
2017.

[73] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In Ethan L. Miller and Steven

Hand, editors, Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, Monterey,
CA, USA, October 4-7, 2015, pages 87–104. ACM, 2015.

[74] Emmett Witchel. Challenges and opportunities for
systems using CXL memory. In ASPLOS 2024, 2024.

[75] Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li,
Bo Wang, Jing Fang, Chuan Sun, and Yuhui Wang.
Polardb-mp: A multi-primary cloud-native database
via disaggregated shared memory. In Pablo Barceló,
Nayat Sánchez Pi, Alexandra Meliou, and S. Sudarshan,
editors, Companion of the 2024 International Confer-
ence on Management of Data, SIGMOD/PODS 2024,
Santiago AA, Chile, June 9-15, 2024, pages 295–308.
ACM, 2024.

[76] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas
Devadas, and Michael Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow., 8(3):209–220,
2014.

[77] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sánchez,
Larry Rudolph, and Srinivas Devadas. Sundial: Harmo-
nizing concurrency control and caching in a distributed
OLTP database management system. Proc. VLDB
Endow., 11(10):1289–1302, 2018.

[78] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim
Harris. The end of a myth: Distributed transaction can
scale. Proc. VLDB Endow., 10(6):685–696, 2017.

[79] Ming Zhang, Yu Hua, and Zhijun Yang. Motor:
Enabling Multi-Versioning for distributed transactions
on disaggregated memory. In 18th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 24), pages 801–819, Santa Clara, CA, July 2024.
USENIX Association.

[80] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu.
FORD: fast one-sided rdma-based distributed transac-
tions for disaggregated persistent memory. In Dean
Hildebrand and Donald E. Porter, editors, 20th USENIX
Conference on File and Storage Technologies, FAST
2022, Santa Clara, CA, USA, February 22-24, 2022,
pages 51–68. USENIX Association, 2022.

[81] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang
Chen, Ning Ding, Fan Du, Jinlei Jiang, Tao Ma, and
Yongwei Wu. Partial failure resilient memory manage-
ment system for (cxl-based) distributed shared memory.
In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 658–674, New York,
NY, USA, 2023. Association for Computing Machinery.



[82] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara
Liskov. Fast databases with fast durability and recovery
through multicore parallelism. In Proceedings of the
11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, page 465–477, USA,
2014. USENIX Association.

[83] Yuhong Zhong, Daniel S. Berger, Carl A. Waldspurger,
Ryan Wee, Ishwar Agarwal, Rajat Agarwal, Frank Hady,
Karthik Kumar, Mark D. Hill, Mosharaf Chowdhury,
and Asaf Cidon. Managing memory tiers with CXL
in virtualized environments. In Ada Gavrilovska and
Douglas B. Terry, editors, 18th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2024, Santa Clara, CA, USA, July 10-12, 2024, pages
37–56. USENIX Association, 2024.

[84] Xinjing Zhou. BTree. https://github.com/zxjca
rrot/2-Tree/tree/master/backend/btreeolc.

(Accessed: May 2025).

[85] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael
Stonebraker. Lotus: Scalable multi-partition transactions
on single-threaded partitioned databases. Proc. VLDB
Endow., 15(11):2939–2952, 2022.

[86] Zhiting Zhu, Newton Ni, Yibo Huang, Yan Sun, Zhipeng
Jia, Nam Sung Kim, and Emmett Witchel. Lupin:
Tolerating partial failures in a cxl pod. In Proceedings
of the 2nd Workshop on Disruptive Memory Systems,
DIMES ’24, page 41–50, New York, NY, USA, 2024.
Association for Computing Machinery.

[87] Tobias Ziegler, Philip A. Bernstein, Viktor Leis, and
Carsten Binnig. Is scalable OLTP in the cloud a
solved problem? In 13th Conference on Innovative
Data Systems Research, CIDR 2023, Amsterdam, The
Netherlands, January 8-11, 2023. www.cidrdb.org, 2023.

https://github.com/zxjcarrot/2-Tree/tree/master/backend/btreeolc
https://github.com/zxjcarrot/2-Tree/tree/master/backend/btreeolc

	Introduction
	CXL Pod Background and Challenges
	Tigon Design and Implementation
	Tigon Overview
	Data Organization red& SW Cache Coherence
	Transaction Execution
	Concurrency Control
	Maintaining and accessing the CAT
	Serializing transactions

	Logging and Recovery
	Implementation

	Evaluation
	Experimental Setup
	End-to-End Performance
	Impact of Limited HWcc Memory
	Software Cache Coherence
	Logging and Latency
	Optimizations

	Related Work
	Conclusion
	Acknowledgment

